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dren  [1, 2] . Over the past decade, the critical care and 
nephrology communities have made great strides in re-
fining and standardizing AKI definitions and care; these 
efforts culminated in formulating the Kidney Disease: 
Improving Global Outcomes (KDIGO) AKI clinical prac-
tice guidelines  [3] . These guidelines contain the first fully 
harmonized AKI definition based upon relative changes 
in serum creatinine and urine output (UOP). With this 
development, AKI can now be identified in a uniform, 
consistent manner across all care environments and 
 information technology platforms.

  In parallel with the development of these standard AKI 
guidelines, we have seen a marked growth in electronic 
health record (EHR) adoption and impressive advances 
in clinical informatics techniques  [4–6] . While these 
2  occurrences are far from being causally related, the now 
ubiquitous presence of EHRs, when combined with  novel 
“big data” informatics approaches, create unique oppor-
tunities for AKI research and care improvement.

  The data contained within the EHR is “big” from the 
standpoint of volume (amount of data present), velocity 
(speed at which new data is generated), and variety 
 (number of different types of data)  [7, 8] . To put this in 
the context of AKI, the EHR contains every creatinine and 
documented UOP value for each patient across the entire 
institution, accumulates new creatinine and UOP data as 
they become available, and contains a myriad of AKI-rel-
evant data elements generated through the routine provi-
sion of clinical care. Within this EHR environment, it is 
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 Abstract 

 While acute kidney injury (AKI) has been poorly defined his-
torically, a decade of effort has culminated in a standardized, 
consensus definition. In parallel, electronic health records 
(EHRs) have been adopted with greater regularity, clinical 
informatics approaches have been refined, and the field of 
EHR-enabled care improvement and research has bur-
geoned. Although both fields have matured in isolation, 
uniting the 2 has the capacity to redefine AKI-related care 
and research. This article describes how the application of a 
consistent AKI definition to the EHR dataset can accurately 
and rapidly diagnose and identify AKI events. Furthermore, 
this electronic, automated diagnostic strategy creates the 
opportunity to develop predictive approaches, optimize AKI 
alerts, and trace AKI events across institutions, care plat-
forms, and administrative datasets.  © 2017 S. Karger AG, Basel 

 Introduction 

 Acute kidney injury (AKI), which is defined as an 
abrupt decline in kidney function, is a common compli-
cation encountered among hospitalized adults and chil-
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possible to apply the KDIGO definition to accurately and 
efficiently identify AKI events, thereby anchoring them in 
time. AKI can then be explored prospectively, investigat-
ed retrospectively, and studied for quality assurance/im-
provement or research purposes; AKI can be evaluated by 
an individual practitioner, the institution itself, or the 
medical community at large. The goal of this manuscript 
is to highlight the unique opportunities that EHR data and 
informatics techniques create within the AKI domain.

  AKI Diagnosis: The Fulcrum of EHR-Enabled 

Approaches 

 The key to EHR-enabled AKI research, prediction, 
tracking, and care improvement is accurate and timely 
diagnosis. The ability to precisely identify AKI is the core 
aspect of all such approaches ( Fig. 1 ). This underscores 
the importance of utilizing and adhering to the KDIGO 
AKI criteria when diagnosing and identifying AKI within 
EHR platforms  [3, 9] . The KDIGO AKI definition con-
tains both serum creatinine and UOP criteria ( Table 1 ) 
and, ideally, all definitional criteria should be applied  [9] .

  Within the EHR, applying the creatinine criteria is 
straightforward. As each creatinine becomes available, it 
can be compared to the patient’s prior creatinines and AKI 
can be diagnosed when the relative ( ≥ 1.5 × increase) or ab-
solute ( ≥ 0.3 mg/dL [27 μmol/L]) change threshold is met. 
Creatinine values are discrete elements and accrue with an 
associated date/time, allowing full application of the tem-
poral components (7 days for relative changes and 48 h for 
absolute changes). One definitional aspect that is challeng-
ing, however, is baseline creatinine determination; accurate 
assessment of baseline is of paramount importance as it is 
the basis of all relative changes used to diagnose and stage 
AKI. Many have addressed this issue and while there is yet 
no consensus in this matter, several approaches have been 
utilized  [9–14] . If creatinine values are available, one may 
use a pre-hospitalization creatinine value as the baseline. 
Most studies utilizing this approach have chosen the lowest 
creatinine obtained during the 3–6 months prior to hospi-
talization; other than in neonates and small infants, creati-
nine is unlikely to change physiologically in that timeframe. 
However, often no creatinine values are available within the 
EHR prior to admission. Patients may receive their ambula-
tory care in a different health system or may have never had 

  Fig. 1.  All EHR-enabled approaches to AKI care improvement and 
research hinge on the ability to accurately diagnose AKI. Once this 
is accomplished, it becomes possible to predict and identify events, 
alert practitioners when their patients develop AKI, standardize 

and improve the quality of care provided in the setting of AKI, and 
track patients/events across institutions, populations, datasets, 
and care platforms. 
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a creatinine obtained prior to hospitalization. In these cases, 
one option is to define the admission creatinine as the base-
line. This is simple and effective; however, it can miss cases 
of AKI, which are present upon admission, underestimat-
ing the burden by as much as one-third  [12] . The second 
option in this scenario is to estimate a baseline creatinine by 
back-calculating from an assumed creatinine clearance 
(CrCl); adult and pediatric studies have tended to presume 
the CrCl to be 75 and 100–120 mL/min/1.73 m 2 , respec-
tively  [10, 12, 13] . This approach will capture AKI events 
present on admission; however, it fails to account for pa-
tients with chronic kidney disease (CKD), misclassifying 
them as AKI. In adult patients, this approach can overesti-
mate the incidence of AKI by 50%  [12] . Additionally, this 
method requires computation, adding complexity to any 
attempt to automate an AKI diagnostic tool. Estimating 
equations also require data elements that are not reliably 
captured in the EHR such as ethnicity and height; the 
 absence of this data could render the tool useless.

  The UOP criteria pose a second definitional challenge 
within the EHR environment. The most substantial prob-
lem is that UOP is not obtained with the same rigor as cre-
atinine. Few hospitalized patients outside of intensive care 
units (ICUs) have indwelling urinary catheters capable of 
providing hourly data; patients, especially those outside of 
ICUs, may not have UOP recorded for hours at a time. 
Furthermore, in children, UOP data is often documented 
only as a void count, without volumetric data. Given the 
relatively short diagnostic timeframe set by the KDIGO 

UOP criteria, many patients with normal renal function 
would be diagnosed with AKI. Second, the EHR itself can 
pose technical challenges. Most EHRs sum intake and out-
put data at static intervals; usually these intervals coincide 
with 8 or 12-h hospital shifts. The UOP criteria, however, 
require a dynamic calculation with a rolling 6–24-h win-
dow. Although not impossible, running such a rolling sum 
for all patients in the hospital may pose logistic,  resource, 
and computational challenges.

  With these issues in mind, given the fact that data re-
garding automated AKI identification are scant and that 
no truly comprehensive method has been developed, 
many have advocated an incremental approach  [9] . It is 
not possible to anticipate all issues, and initial experience 
with these tools will enhance refinement. Thus, with the 
goal of creating an effective and efficient automated AKI 
diagnostic tool, 2 compromises might be made. The first 
would be to focus initially on integrating the creatinine 
criteria with the expectation of adding the UOP criteria 
in future iterations; this will allow earlier and simpler 
adoption and will begin to build a dataset that we can use 
to improve such tools. It is important to note, however, a 
recent international multicenter pediatric study demon-
strated that 2/3 of patients who met AKI by UOP criteria 
would have been missed by the creatinine criteria alone; 
additionally, these UOP-diagnosed AKI events carried an 
increased risk for mortality  [15] . This underscores the 
need to work toward the integration of the full KDIGO 
criteria. With the same concept in mind, the second com-

Table 1.  KDIGO AKI criteria

Definition of AKI
– Increase in SCr by ≥0.3 mg/dL (≥26.5 μmol/L) within 48 h; or
– Increase in SCr to ≥1.5 times baseline, which is known or presumed to have occurred within the prior 7 days; or
– Urine volume <0.5 mL/kg/h for 6 h

Staging/grading of AKI severity
Stage 1 Increase in SCr by 1.5–1.9 times baseline; or

Increase in SCr by ≥0.3 mg/dL (≥26.5 μmol/L); or
Urine output <0.5 mL/kg/h for 6–12 h

Stage 2 Increase in SCr by 2.0–2.9 times baseline; or
Urine output <0.5 mL/kg/h for ≥12 h

Stage 3 Increase in SCr by 3.0 times baseline; or
Increase in SCr to 4.0 mg/dL (353.6 μmol/L); or
Initiation of renal replacement therapy; or
In patients <18 years, decrease in eGFR to 35 mL/min/1.73 m2; or
Urine output <0.3 mL/kg/h for ≥24 h; or
Anuria for ≥12 h
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promise might be to initially use the lowest creatinine 
within the 3 months prior to admission, inclusive of the 
day of admission, as the baseline. Although this would 
not be a flawless approach and would likely miss some 
patients with AKI whose severity peaks on admission, it 
would reduce the complexity of the initial identification 
tool by not requiring a computational creatinine estima-
tion and would effectively handle patients with CKD. In 
situations where it becomes apparent that the admission 
creatinine did not represent the patient’s baseline (i.e., the 
creatinine rapidly declines in the first several hospital 
days), it would be possible to retroactively enter a more 
accurate baseline; although this would not help in real-
time, it would help more accurately define disease burden 
and would be beneficial when machine learning tech-
niques were applied predictively. Eventually, however, 
through an iterative process, an optimized tool could be 
developed, which utilized creatinine changes and UOP 
changes when available, and when baseline data was not 
available, used the admission creatinine as a baseline for 
patients with CKD and a back-calculated creatinine for 
non-CKD admissions.

  AKI Prediction: The Pre-Disease State 

 Once AKI can be reliably and accurately diagnosed, all 
EHR-enabled approaches naturally unfold around that 
event. Prior to discussing techniques that are subsequent 
to the development of AKI, it is important to examine the 
antecedent time frame. The temporal anchoring of AKI 
within the EHR clearly delineates a pre-disease state that 
contains all the EHR data which accumulate prior to the 
development of AKI. High-content, high-throughput 
predictive analytic techniques can be applied to this co-
lossal dataset in order to identify a pre-AKI signal ( Fig. 2 ). 
This signal can be used to discriminate between patients 
who are likely or unlikely to develop AKI, allowing pa-
tients to be categorized by AKI risk. The ability to predict 
AKI risk has profound implications since currently no 
treatments exist for AKI once it develops  [16–18] . When 
patients at high AKI risk are identified, it becomes pos-
sible to modify care and implement preventative and 
harm avoidance strategies among these patients  [19–24] .

  A comprehensive appraisal of EHR-enabled AKI pre-
diction is beyond the scope of this review; however, sev-
eral groups have evaluated such approaches and the tech-
nique was the subject of a recent Acute Dialysis Quality 
Initiative (ADQI) consensus conference  [8, 25–27] . The 
goal of this review, therefore, is to highlight several aspects 

related to AKI prediction and risk stratification. The first 
concept worthy of discussion is the prediction target. 
While it may initially seem obvious that the models should 
predict “AKI,” upon reflection, a more nuanced approach 
might be needed. Across many patient populations, AKI 
has been associated with poorer outcomes, regardless of 
severity. However, the strength of those associations is 
greater for stages 2 and 3 AKI and in some populations, 
milder AKI has not always portended a worse prognosis 
 [1, 2, 15, 28–36] . Given these parameters, an incremental 
approach might again be optimal. One option would be to 
begin by building a model to predict moderate/severe 
(stage 2/3) AKI; this would likely generate a more robust 
initial model as associations between predictors and AKI 
would be greater and it would eliminate some of the 
“noise” associated with stage 1 AKI  [8] . However, given 
that stage 1 AKI is indeed associated with worse outcomes 
in some populations, subsequent iterations would aim to 
predict AKI of all severities. An initial model aimed at 
stage 2/3 AKI would also have the advantage of allowing 
prediction of AKI relevant outcomes in addition to AKI 
events. Given the greater associational strength between 
moderate and severe AKI and outcomes, the prediction 
model could identify not only patients at high risk for AKI 
development but additionally those who are likely to ex-
perience poorer AKI-related outcomes. This would add 
additional relevance to the model and provide practitio-
ners with more useful clinical information.

  The second aspect of AKI prediction that merits dis-
cussion is the technique utilized. To date, a majority of 
AKI prediction models have used a supervised approach; 
even among massive datasets, the potential predictors 

  Fig. 2.  Within the EHR dataset, it is possible to define a pre-disease 
state that exists prior to the development of AKI. Within this pre-
disease timeframe, it is possible to identify a signal or series of data 
elements that is associated with AKI. This signal can be used to 
develop a model capable of assigning AKI-related risk and identi-
fying patients likely to experience AKI (reproduced with permis-
sion from ADQI; www.adqi.net). 
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have been chosen   a priori based upon their association 
with AKI in previous studies  [37–41] . While this is an ex-
cellent initial approach, it does not take full advantage of 
big data methodologies. Unsupervised or machine-learn-
ing techniques allow predictors to be identified without 
prior prejudice; this allows the identification of predictors 
that may be both novel and strong. Using a dynamic tech-
nique such as random forest modeling, cluster analysis, 
or principal component analysis, although it is a depar-
ture from classic model building approaches, would 
 optimize the use of EHR data  [8] .

  AKI Alerting: The Disease State 

 The ability to accurately and efficiently diagnose AKI 
in real time also paves the way for automated notification 
systems and alerting. Essentially, an AKI alert notifies care 
providers immediately when their patient meets the diag-
nostic criteria for AKI. In theory, the knowledge that their 
patient has AKI would allow practitioners to modify or 
optimize care with the goal of eliminating ongoing injury, 
preventing further disease progression and mitigating 
AKI sequelae. These alerts would seem at first glance to be 
straightforward effective techniques to improve AKI-re-
lated care and outcomes; however, in practice, the con-
cepts that surround alerting are complex and subtle choic-
es in implementation can have profound implications.

  This is perhaps best exemplified by 2 recently pub-
lished AKI alert trials. The first trial was a pre/post inter-
vention study of an alert within an ICU at a single center 
 [42, 43] . The alert was based on changes in UOP and cre-
atinine and the attending physicians were notified by 
Digital Enhanced Cordless Technology phones whenever 
a patient transitioned from one AKI stage to the next. 
This study found that the alert led to an increase in the 
frequency of therapeutic interventions among patients 
with AKI (28.7 vs. 7.9%,  p  < 0.001)  [42] . During the alert 
phase of the study, patients with AKI were more likely to 
receive fluid therapy, diuretics, and vasopressor support; 
additionally, the time to intervention was significantly re-
duced by the alert  [42] . Finally, patients who developed 
“risk”-staged AKI were more likely to experience a return 
to baseline renal function within 8 h  [42] . The second 
study was a single-center, hospital-wide, randomized 
controlled trial (RCT) of an AKI alert  [3, 44] . The cover-
ing intern, resident, or advanced practice provider (NP or 
PA) was notified when their patient met criteria for AKI 
based upon changes in serum creatinine values. Notably, 
in addition to identifying the patient as having AKI and 

requesting that the practitioner “take appropriate diag-
nostic and therapeutic measures,” the text of the alert in-
formed the practitioner that the alert “does not fire for all 
patients with AKI  [44] .” This trial was essentially negative 
and did not find differences in maximum creatinine 
change, receipt of dialysis, death, or nephrotoxin admin-
istration  [44] .

  While it may be tempting to take the negative results 
from this RCT as evidence that AKI alerts are ineffective, 
we believe this is the wrong conclusion to draw. There is 
plentiful evidence that AKI alerts can be effective; the 
ADQI working group given the task of reviewing the lit-
erature surrounding such alerts identified 11 studies 
demonstrating some degree of improvement with alert 
implantation  [45] . What these 2 studies do underscore, 
however, is the complexity behind the alerting mecha-
nism  [46] .

  Some aspects of the alert are straightforward. Alerts 
and studies that examine them should employ the con-
sensus definition for AKI. The ADQI consensus group 
felt that the full KDIGO definition should be employed, 
meaning that when available, the UOP criteria should be 
integrated in addition to the serum creatinine criteria 
 [45] . Additionally, if the alert is meant to have a signifi-
cant clinical impact, the alert must fire in real or near real 
time; given the rapidity with which AKI can progress, a 
delay in even 6–12 h could substantially reduce the utility 
of the alert. Also, any alert should, at a minimum, grade 
the severity of the AKI in the alerting process. Additional 
contextual details are likely to improve the performance 
of the alert and will help inform provider decision mak-
ing; ideally alerts will strike a balance between adequate 
contextual information and minimal complexity. Finally, 
although the alert is capable of increasing AKI awareness, 
it must be combined with some sort of evidence-informed 
clinical decision support  [42, 45] . This may be a care bun-
dle, a set of institutional guidelines, or electronic recom-
mendations and physician order support.

  Other aspects of alerting are more variable and are 
highly dependent upon the goals and targets of the alert. 
The first such feature is the location of the alert. Prior to 
integrating an alert, it is important to determine where it 
will fire. Will it be active in the ICUs where AKI is com-
mon but more overt? Or would it be more effective on 
non-critical care wards where AKI is less ubiquitous but 
more commonly missed? Should it be active only in the 
inpatient setting or might there be a role among ambula-
tory patients? The second characteristic is the target of the 
alert – the person to whom the alert is delivered. In the 
aforementioned examples, the alert delivered directly to 
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the attending physician was more effective than the alert 
delivered to the resident/intern/AHP. Although it is obvi-
ous that the alert should be delivered to the primary ser-
vice, it is challenging to know which member of that ser-
vice is likely to derive the most value from the informa-
tion. It is likely that this may differ between institutions, 
but it is an aspect that must be discussed prior to imple-
mentation. Another attribute is the alerting method or 
medium. There are a variety of ways the alert can be de-
livered. The studies above utilized text pages and phones. 
Other options include EHR alerts or reports delivered to 
providers at certain time intervals. Data on alerting me-
dium are lacking, but it is clear that the choice of the alert-
ing method will need to be tailored to the individual goals. 
The last aspect that is necessary to consider is the disrup-
tiveness of the alert. Some alerts do not need to be ac-
knowledged, whereas others require intervention and 
may disrupt bedside workflow. Clearly, the disruptive-
ness will impact physician acceptance and alert effective-
ness; compliance has been found to be greater with in-
creasing disruptiveness  [46] . As stated, all of these vari-
able aspects must be carefully identified and defined in 
the context of the alerting goal and target outcome. If the 
aim is to identify AKI cases more accurately, a successful 
alert might be standalone, non-disruptive, and delivered 
to ancillary staff using a near-real time report. However, 
if the goal is to reduce AKI progression or improve mor-
tality, the AKI alert would ideally be in real time, highly 
disruptive, delivered to the provider most intimately in-
volved in the patients’ care, and connected to specific, 
highly actionable clinical decision support. What is clear, 
however, is that a comprehensive implementation strat-
egy and a robust mechanism for auditing, feedback, and 
improvement must be developed prior to putting any 
alerting tool into practice  [46] .

  Longitudinal AKI Care and AKI Tracing: 

The Post-Disease State 

 Although AKI was once thought to be a transient, self-
limited event, over the past decade, the mid- and long-
term consequences of kidney injury have been well estab-
lished. In a number of patient populations, AKI has been 
associated with increased risk for CKD, proteinuria, hy-
pertension, cardiovascular disease, and stroke  [47–51] . 
Despite the ongoing morbidity risk that exists well after 
the event itself, patients who experience AKI rarely re-
ceive the follow-up care they warrant  [52] . For the most 
part, the lack of follow-up can be traced to a lack of pro-

vider and patient awareness regarding the occurrence of 
AKI and the potential long-term hazard associated with 
the diagnosis  [53] . This lack of recognition also contrib-
utes to an inability to trace patients with AKI on institu-
tional, administrative, and population levels  [53, 54] . 
 Although barriers exist, it is possible that EHR-enabled 
AKI diagnosis as described above can help address this 
issue ( Fig. 3 ).

  Tracking patients with AKI hinges on the ability to 
“tag” these patients with an AKI identifier  [54] ; once the 
diagnosis of AKI is made electronically within the EHR, 
any such tag must be applied reliably. A number of differ-
ent types of identifiers exist; however, perhaps the most 
straightforward and established method would be to tag 
patients with the specific International Classification of 
Diseases Ninth/Tenth Revision (ICD-9/10) code for AKI. 
Traditionally, such ICD-9/10 coding has demonstrated 
acceptable specificity but poor sensitivity  [55, 56] ; this is 
primarily related to the aforementioned lack of AKI 
awareness and lack of a clear operational definition. How-
ever, as described above, application of the KDIGO AKI 
criteria to the EHR dataset in real time allows accurate, 
automatic diagnosis of AKI events; this, in turn, could 
routinely apply the ICD-9/10 code to the patient’s elec-
tronic chart; should a better tag be developed, the same 
strategy could be used to attach it electronically as well. 
This tagging could be performed autonomously (without 
any provider input) or could be subject to provider adju-
dication. Regardless, once this tag was applied, it sudden-
ly becomes possible to track AKI at the patient, institu-
tion, and population level with relative ease.

  At the patient level, an AKI tag could help direct pa-
tients into the appropriate follow-up clinics; there is ob-
servational evidence that seeing a nephrologist after an 
AKI event improves outcomes  [57] . One approach would 
be to use the AKI tag at discharge to automatically notify 
primary care physicians and generate a nephrology fol-
low-up appointment  [58] . The discharge order itself 
could trigger the follow-up encounter and populate the 
patient’s discharge instructions. It would even be possible 
to generate ambulatory orders for serum creatinine and 
albumin/creatinine ratios, which would be consistent 
with the KDIGO AKI guidelines  [3] . While it may not be 
feasible for every single patient with AKI to be seen by a 
nephrologist, a graded strategy where patients with stage 
2/3 AKI were directed into follow-up clinics might be a 
good initial approach. Additionally, the AKI tag could in-
crease awareness among other providers; physicians 
might be less likely to prescribe nephrotoxic medications 
or more likely to monitor kidney function in patients 
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whom they know have experienced a severe episode of 
AKI previously. Clearly, this type of patient-level tagging 
is most effective in a closed healthcare organization. The 
possibility that subsequent care will be provided outside 
of the tagging institution and similar fragmentation of 
care is a definite barrier to this approach  [54] .

  At the population level, accurate diagnosis and tagging 
of AKI events allow patients to be traced longitudinally. 
If patients were assigned a unique patient identifier, they 
could be followed across institutions and throughout ad-
ministrative databases. This would have a myriad of ben-
efits. First, accurate diagnosis and long-term tracking of 
patients with AKI would allow far better assessment of 
the healthcare burden of AKI. Currently, administrative 
databases rely upon physician awareness and ICD9/10 
coding to flag AKI events. This leads to a lack of sensitiv-
ity and a bias toward more severe AKI events or receipt 
of dialysis  [53] ; the cost and morbidity data acquired from 
such databases are an inaccurate reflection of the entirety 
of the AKI spectrum. Second, accurate identification of 
patients with AKI could facilitate recruitment into clini-

cal trials or registries, allowing for scientific advancement 
of AKI management strategies. Third, institutions would 
have the opportunity for benchmarking and quality-im-
provement initiatives if approaches were standardized 
across the disease spectrum.

  Conclusions 

 The combination of a standard AKI definition, the 
pervasive growth of EHR adoption, and the development 
of novel informatics tools has created a unique set of cir-
cumstances capable of transforming AKI-related care 
and research. Application of the KDIGO criteria to the 
EHR dataset allows accurate and timely diagnosis of AKI 
events. This, in turn, allows us to identify patients at high 
AKI risk, inform practitioners about the development of 
AKI in real time, provide care givers with effective care 
strategies, and link AKI events across institutional and 
care system boundaries. Eventually, these patient-, insti-
tution-, and population-level techniques will lead to bet-
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  Fig. 3.  A number of techniques and strategies designed to im-
prove AKI outcomes follow from the accurate, real-time, EHR-
enabled diagnosis of AKI. At the patient level, predictive and 
alerting approaches will lead to better early outcomes. At the in-
stitution or hospital level, the ability to reliably identify AKI 
events allows effective patient tracking and follow-up as well as 

organizational quality improvement efforts. Across the entire 
population, reliable identification of AKI events leads to linkage 
across disparate care systems and throughout administrative da-
tabases. All of these, in turn, influence care improvement that 
enhances not only better early outcomes, but superior long-term 
outcomes as well. 
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ter short- and long-term outcomes for patients, hospitals, 
and broad care systems ( Fig. 3 ). Although potential bar-
riers exist and many nuances must be considered, these 
EHR-enabled approaches have the potential to markedly 
improve AKI-related knowledge and care.
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